Matching Long Text Documents via Graph Convolutional Networks
نویسندگان
چکیده
Identifying the relationship between two text objects is a core research problem underlying many natural language processing tasks. A wide range of deep learning schemes have been proposed for text matching, mainly focusing on sentence matching, question answering or query document matching. We point out that existing approaches do not perform well at matching long documents, which is critical, for example, to AI-based news article understanding and event or story formation. The reason is that these methods either omit or fail to fully utilize complicated semantic structures in long documents. In this paper, we propose a graph approach to text matching, especially targeting long document matching, such as identifying whether two news articles report the same event in the real world, possibly with different narratives. We propose the Concept Interaction Graph to yield a graph representation for a document, with vertices representing different concepts, each being one or a group of coherent keywords in the document, and with edges representing the interactions between different concepts, connected by sentences in the document. Based on the graph representation of document pairs, we further propose a Siamese Encoded Graph Convolutional Network that learns vertex representations through a Siamese neural network and aggregates the vertex features though Graph Convolutional Networks to generate the matching result. Extensive evaluation of the proposed approach based on two labeled news article datasets created at Tencent for its intelligent news products show that the proposed graph approach to long document matching significantly outperforms a wide range of state-of-the-art methods.
منابع مشابه
Deep Convolutional Networks on Graph-Structured Data
Deep Learning’s recent successes have mostly relied on Convolutional Networks, which exploit fundamental statistical properties of images, sounds and video data: the local stationarity and multi-scale compositional structure, that allows expressing long range interactions in terms of shorter, localized interactions. However, there exist other important examples, such as text documents or bioinf...
متن کاملAn Optimal Approach to Local and Global Text Coherence Evaluation Combining Entity-based, Graph-based and Entropy-based Approaches
Text coherence evaluation becomes a vital and lovely task in Natural Language Processing subfields, such as text summarization, question answering, text generation and machine translation. Existing methods like entity-based and graph-based models are engaging with nouns and noun phrases change role in sequential sentences within short part of a text. They even have limitations in global coheren...
متن کاملSemantic Labeling using Convolutional Networks coupled with Graph-Cuts for Document binarization
Most data mining applications on collections of historical documents require binarization of the digitized images as a pre-processing step. Historical documents are often subjected to degradations making mathematical modeling of appearance of the text, background and all kinds of degradations challenging. In the current work we try to tackle binarization as pixel classification problem. We firs...
متن کاملDocument Binarization Combining with Graph Cuts and Deep Neural Networks
Most data mining applications on collections of historical documents require binarization of the digitized images as a pre-processing step. Historical documents are often subjected to degradations such as parchment aging, smudges and bleed through from the other side. The text is sometimes printed, but more often handwritten. Mathematical modeling of the appearance of the text, as well as the b...
متن کاملDeep Neural Networks with Inexact Matching for Person Re-Identification
Person Re-Identification is the task of matching images of a person across multiple camera views. Almost all prior approaches address this challenge by attempting to learn the possible transformations that relate the different views of a person from a training corpora. Then, they utilize these transformation patterns for matching a query image to those in a gallery image bank at test time. This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.07459 شماره
صفحات -
تاریخ انتشار 2018